Wierzchołek paraboli o równaniu y=(x-1)^2+2c leży na prostej o równaniu y=6. Wtedy

Wierzchołek paraboli o równaniu \(y=(x-1)^2+2c\) leży na prostej o równaniu \(y=6\). Wtedy:

\(c=-6\)
\(c=-3\)
\(c=3\)
\(c=6\)
Rozwiązanie:
Krok 1. Ustalenie wartości współrzędnej \(q\).

Skoro wierzchołek określony współrzędnymi \(W=(p;q)\) leży na prostej o równaniu \(y=6\), to znaczy że współrzędna „igrekowa” tego wierzchołka jest równa \(6\), zatem \(q=6\).

Krok 2. Obliczenie wartości parametru \(c\).

Równanie paraboli w postaci kanonicznej możemy zapisać jako \(y=(a-p)^2+q\), gdzie \(p\) oraz \(q\) to współrzędne wierzchołka paraboli. Przyrównując postać kanoniczną do równania z treści zadania widzimy wyraźnie, że wyraz \(2c\) pokrywa się ze współrzędną \(q\) zatem musimy rozwiązać następujące równanie:
$$2c=q \\
2c=6 \\
c=3$$

Odpowiedź:

C. \(c=3\)

Dodaj komentarz

Twój adres email nie zostanie opublikowany.