Dany jest równoległobok \(ABCD\). Na przedłużeniu przekątnej \(AC\) wybrano punkt \(E\) tak, że \(|CE|=\frac{1}{2}|AC|\). Uzasadnij, że pole równoległoboku \(ABCD\) jest cztery razy większe od pola trójkąta \(DCE\).
Tak naprawdę kluczem do sukcesu jest dorysowanie wspólnej wysokości trójkąta \(ACD\) oraz rozwartokątnego trójkąta \(DCE\) z wierzchołka \(D\). Warto też zauważyć, że pole trójkąta \(ACD\) jest dwa razy mniejsze od pola naszego równoległoboku.
Trójkąt \(DCE\) jest rozwartokątny, jego podstawą niech będzie \(|CE|\), a wysokością dorysowany odcinek \(h\). Otrzymamy więc:
$$P_{DCE}=\frac{1}{2}\cdot|CE|\cdot h$$
W treści zadania mamy podaną informację, że \(|CE|=\frac{1}{2}|AC|\) tak więc po podstawieniu tej informacji do powyższego wzoru otrzymamy:
$$P_{DCE}=\frac{1}{2}\cdot\frac{1}{2}|AC|\cdot h \\
P_{DCE}=\frac{1}{4}\cdot|AC|\cdot h$$
Możemy jeszcze zapisać sobie wzór na pole trójkąta \(ACD\), bo przyda nam się on w kolejnym kroku:
$$P_{ACD}=\frac{1}{2}\cdot|AC|\cdot h$$
Nasz równoległobok ma dwa razy większą powierzchnię od trójkąta \(ACD\), zatem:
$$P_{ABCD}=2\cdot P_{ACD} \\
P_{ABCD}=2\cdot\frac{1}{2}\cdot|AC|\cdot h \\
P_{ABCD}=|AC|\cdot h$$
$$\frac{P_{ABCD}}{P_{DCE}}=\frac{|AC|\cdot h}{\frac{1}{4}|AC|\cdot h}=4$$
Udało nam się w ten sposób udowodnić, że pole równoległoboku \(ABCD\) jest czterokrotnie większe od pola trójkąta \(DCE\), co kończy nasze dowodzenie.
Udowodniono obliczając pola poszczególnych trójkątów.