Zbiorem rozwiązań nierówności \(ax+4\ge0\) z niewiadomą \(x\) jest przedział \((-\infty,2\rangle\). Wyznacz \(a\).
Chcąc rozwiązać nierówność \(ax+4\ge0\) nie możemy ot tak podzielić obu stron przez \(a\), bo nie wiemy czy przypadkiem \(a\) nie jest równe zero, a przecież w matematyce nie można wykonywać dzielenia przez zero.
Zatem gdy \(a=0\), to otrzymamy nierówność:
$$0\cdot x+4\ge0 \\
4\ge0$$
To oznacza, że gdy \(a=0\) to nierówność jest spełniona dla \(x\in R\), a więc to na pewno nie jest poprawna odpowiedź, gdyż my wiemy, że rozwiązaniem tej nierówności musi być przedział \((-\infty;2\rangle\).
Wiemy już, że na pewno \(a\) nie jest równe zero, ale to w dalszym ciągu nie ułatwia nam zadania, bo nie wiemy czy \(a\) jest liczbą dodatnią, czy ujemną. Gdyby była to liczba ujemna, to przy dzieleniu musimy zmienić znak nierówności. Zobaczmy więc co nam wyjdzie z tej nierówności przy założeniu, że \(a\gt0\).
$$ax+4\ge0 \quad\bigg/-4 \\
ax\ge-4 \quad\bigg/:a \\
x\ge-\frac{4}{a}$$
To oznacza, że nasza nierówność dla \(a\gt0\) przyjmuje rozwiązania dla \(x\in\langle-\frac{4}{a};+\infty)\), co także nie pasuje nam do przedziału z treści zadania.
Sprawdźmy zatem jak będzie wyglądać sytuacja, gdy \(a\) jest mniejsze od zera. To oznacza, że teraz dzieląc przez \(a\) musimy zmienić znak nierówności na przeciwny:
$$ax+4\ge0 \quad\bigg/-4 \\
ax\ge-4 \quad\bigg/:a \\
x\le-\frac{4}{a}$$
(Zwróć uwagę na zmianę znaku w ostatniej linijce. Dzielimy przez liczbę ujemną, więc zmienia się znak nierówności).
Otrzymaliśmy tym razem informację, że rozwiązaniem jest przedział \((-\infty;-\frac{4}{a}\rangle\) i taki przedział jest zbieżny z tym co mamy podane w treści zadania. Dzięki tej informacji możemy wyznaczyć \(a\), wystarczy przyrównać \(2\) do wyrażenia \(-\frac{4}{a}\). Zatem:
$$2=-\frac{4}{a} \\
2a=-4 \\
a=-2$$
\(a=-2\)

W drugim przypadku jak dzielimy równanie przez liczbę ujemną nie powinien zniknąć minus ax≥−4/:a
x≤−4/a?
Dobre pytanie ;)
Ten minus nie powinien zniknąć w zapisie (czyli jest wszystko ok), ale rozumiem co masz na myśli. Minus zniknie nam, jak fizycznie podstawimy do wyrażenia -4/a ujemną wartość a. Przykładowo jak a=-2, to będziemy mieć -4/-2=2 (czyli dopiero po podstawieniu zniknie nam minus).
Dlaczego przyrównujemy do 2??
Bo przyrównujemy przedział (-nieskończoność; 2> do przedziału (-nieskończonosć; -4/a> :) Musimy więc przyrównać dwa krańce tych przedziałów, czyli 2 z -4/a :)