Uzasadnij, że jeśli (a^2+b^2)(c^2+d^2)=(ac+bd)^2, to ad=bc

Uzasadnij, że jeśli \((a^2+b^2)(c^2+d^2)=(ac+bd)^2\), to \(ad=bc\).

Rozwiązanie:
Krok 1. Wymnożenie poszczególnych wyrazów.

Wymnażamy po kolei poszczególne wyrazy po lewej stronie, a po prawej stosujemy wzór skróconego mnożenia.
$$(a^2+b^2)(c^2+d^2)=(ac+bd)^2 \\
a^2\cdot c^2+a^2\cdot d^2+b^2\cdot c^2+b^2\cdot d^2=(ac)^2+2\cdot ac\cdot bd+(bd)^2 \\
a^2\cdot c^2+a^2\cdot d^2+b^2\cdot c^2+b^2\cdot d^2=a^2\cdot c^2+2\cdot ac\cdot bd+b^2\cdot d^2$$

Krok 2. Redukcja wyrazów podobnych i uproszczenie zapisu.

Skracamy obie strony równania przez \(a^2\cdot c^2\) oraz przez \(b^2\cdot d^2\).
$$\require{cancel}
\cancel{a^2\cdot c^2}+a^2\cdot d^2+b^2\cdot c^2+\cancel{b^2\cdot d^2}=\cancel{a^2\cdot c^2}+2\cdot ac\cdot bd+\cancel{b^2\cdot d^2} \\
=a^2\cdot d^2+b^2\cdot c^2=2\cdot ac\cdot bd$$

Teraz przenosimy wszystkie wartości na lewą stronę:
$$a^2\cdot d^2+b^2\cdot c^2-2\cdot ac\cdot bd=0$$

Zapis ten możemy uprościć do postaci:
$$(ad)^2+(bd)^2-2\cdot ac\cdot bd=0$$

Krok 3. Zapisanie powstałego równania z wykorzystaniem wzorów skróconego mnożenia.

Musimy dostrzec, że powstały zapis możemy przekształcić korzystając ze wzorów skróconego mnożenia. Widać to zwłaszcza wtedy, kiedy powyższe równanie pokażemy w formie \((ad)^2-2\cdot ac\cdot bd+(bd)^2=0\). Zatem:
$$(ad)^2-2\cdot ac\cdot bd+(bd)^2=0 \\
(ad-bc)^2=0$$

Krok 4. Obliczenie wartości powstałego równania.

Pierwiastkując obie strony równania otrzymamy:
$$(ad-bc)^2=0 \quad\bigg/\sqrt{} \\
ad-bc=0 \\
ad=bc$$

Odpowiedź:

Udowodniono korzystając ze wzorów skróconego mnożenia.

Dodaj komentarz

Twój adres email nie zostanie opublikowany.