Rozwiązanie
Krok 1. Sporządzenie rysunku pomocniczego.
Z informacji o tym, że \(\frac{|AP|}{|PB|}=\frac{|CR|}{|RD|}=\frac{3}{2}\) wynika, że odcinki \(AP\) oraz \(RC\) mają długość \(3x\), natomiast \(PB\) oraz \(RD\) mają długość \(2x\):
Dodatkowo na rysunku możemy sobie zaznaczyć, że odcinek \(AD\) jest wysokością \(h\).
Krok 2. Obliczenie pola powierzchni czworokąta \(APCR\).
Z treści zadania wiemy, że prostokąt \(ABCD\) o boku \(|AB|=5x\) i wysokości \(|AD|=h\) miał pole powierzchni równe \(90\). Możemy zatem zapisać, że:
$$5x\cdot h=90 \\
h=\frac{90}{5x}$$
Nasz równoległobok \(APCR\) będzie miał pole równe:
$$P=3x\cdot h$$
Podstawiając wyznaczone przed chwilą \(h=\frac{90}{5x}\) otrzymamy:
$$P=3x\cdot\frac{90}{5x} \\
P=\frac{270}{5} \\
P=54$$
Super, dziękuję.
Dostałem to zadanie to rozwiązania, nie chciało mi całkowicie myśleć z rana, i napisałem 90:5=18 ; ap=3 ; 18*3 = 54, głupi ma szczęście jak to mówią
Hahaha doslownie tak samo zrobiłam jak ty