Kąt alfa jest ostry i tg alfa=5/12. Oblicz cos alfa

Kąt \(α\) jest ostry i \(tgα=\frac{5}{12}\). Oblicz \(cosα\).

Rozwiązanie:
Krok 1. Ułożenie odpowiedniego układu równań.

Wiemy, że \(tgα=\frac{sinα}{cosα}\) oraz że \(sin^2α+cos^2α=1\). Na tej podstawie ułóżmy odpowiedni układ równań:

\begin{cases}
\frac{5}{12}=\frac{sinα}{cosα} \\
sin^2α+cos^2α=1
\end{cases}

Krok 2. Rozwiązanie układu równań.

\begin{cases}
\frac{5}{12}=\frac{sinα}{cosα} \quad\bigg/\cdot cosα \\
sin^2α+cos^2α=1
\end{cases}\begin{cases}
\frac{5}{12}cosα=sinα \\
sin^2α+cos^2α=1
\end{cases}

Podstawiamy wartość \(sinα\) z pierwszego równania do drugiego:
$$\left(\frac{5}{12}cosα\right)^2+cos^2α=1 \\
\frac{25}{144}cos^2α+cos^2α=1 \\
\frac{25}{144}cos^2α+\frac{144}{144}cos^2α=1 \\
\frac{169}{144}cos^2α=1 \quad\bigg/\cdot\frac{144}{169} \\
cos^2α=\frac{144}{169} \\
cosα=\sqrt{\frac{144}{169}} \quad\lor\quad cosα=-\sqrt{\frac{144}{169}} \\
cosα=\frac{\sqrt{144}}{\sqrt{169}} \quad\lor\quad cosα=-\frac{\sqrt{144}}{\sqrt{169}} \\
cosα=\frac{12}{13} \quad\lor\quad -cosα=\frac{12}{13}$$

Z racji tego, że w zadaniu jest mowa o kącie ostrym, to \(cosα\gt0\), a więc odrzucamy rozwiązanie ze znakiem ujemnym, zatem \(cosα=\frac{12}{13}\).

Odpowiedź:

\(cosα=\frac{12}{13}\)

Dodaj komentarz

Twój adres email nie zostanie opublikowany.