Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A

Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że otrzymamy liczbę podzielną przez \(9\) lub podzielną przez \(12\).

Rozwiązanie

Krok 1. Obliczenie liczby wszystkich zdarzeń elementarnych.
Wybieramy jedną liczbę spośród wszystkich liczb dwucyfrowych. Skoro liczb dwucyfrowych jest \(90\), to znaczy że:
$$|Ω|=90$$

Krok 2. Obliczenie liczby zdarzeń sprzyjających.
Zdarzeniem sprzyjającym jest sytuacja w której wylosowana liczba jest podzielna przez \(9\) lub \(12\). Wypiszmy sobie zatem te liczby (uważając na to, by żadnej z liczb nie wypisać dwukrotnie):
$$18,27,36,45,54,63,72,81,90,99 \\
12,24,48,60,84,96$$

Takich liczb jest \(16\), zatem \(|A|=16\).

Krok 3. Obliczenie prawdopodobieństwa.
$$P(A)=\frac{|A|}{|Ω|}=\frac{16}{90}=\frac{8}{45}$$

Odpowiedź

\(P(A)=\frac{8}{45}\)

2
Dodaj komentarz

nikola

a dlaczego nie bierzemy pod uwagę liczby 9? skoro również jest podzielna przez samą siebie