Rzucamy dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że liczba oczek w drugim rzucie jest o \(1\) większa od liczby oczek w pierwszym rzucie.
Rozwiązanie:
Krok 1. Ustalenie liczby wszystkich możliwych zdarzeń elementarnych.
Na każdej kostce może wypaść jeden z sześciu wyników, a skoro rzucamy niezależnie dwoma kostkami, to liczba wszystkich kombinacji będzie równa \(|Ω|=6\cdot6=36\).
Krok 2. Ustalenie liczby zdarzeń sprzyjających.
Sprzyjającymi zdarzeniami (czyli takimi, które spełniają warunki naszego zadania) jest pięć kombinacji:
$$(1,2),(2,3),(3,4),(4,5),(5,6)$$
Stąd też możemy napisać, że \(|A|=5\).
Krok 3. Obliczenie prawdopodobieństwa.
Prawdopodobieństwo obliczymy korzystając ze wzoru:
$$P(A)=\frac{|A|}{|Ω|}=\frac{5}{36}$$
Odpowiedź:
\(P(A)=\frac{|A|}{|Ω|}=\frac{5}{36}\)