Wykresy funkcji kwadratowej – zadania maturalne

Wykresy funkcji kwadratowej - zadania

Zadanie 1. (1pkt) Wykresem funkcji kwadratowej \(f(x)=-3x^2+3\) jest parabola o wierzchołku w punkcie:

Zadanie 2. (1pkt) Zbiorem wartości funkcji kwadratowej \(f\) jest przedział \((-\infty;3\rangle\). Na którym rysunku przedstawiono wykres funkcji \(f\)?

Zadanie 3. (1pkt) Dane są funkcje liniowe \(f(x)=x-2\) oraz \(g(x)=x+4\) określone dla wszystkich liczb rzeczywistych \(x\). Wskaż, który z poniższych wykresów jest wykresem funkcji \(h(x)=f(x)\cdot g(x)\).

Zadanie 4. (1pkt) Wskaż wykres funkcji, która w przedziale \(\langle-4,4\rangle\) ma dokładnie jedno miejsce zerowe.

Zadanie 5. (1pkt) Wierzchołkiem paraboli będącej wykresem funkcji określonej wzorem \(f(x)=x^2-4x+4\) jest punkt o współrzędnych:

Zadanie 6. (1pkt) Dana jest parabola o równaniu \(y=x^2+8x-14\). Pierwsza współrzędna wierzchołka tej paraboli jest równa:

Zadanie 7. (1pkt) Wierzchołkiem paraboli o równaniu \(y=-3(x-2)^2+4\) jest punkt o współrzędnych:

Zadanie 8. (1pkt) Wierzchołek paraboli o równaniu \(y=(x-1)^2+2c\) leży na prostej o równaniu \(y=6\). Wtedy:

Zadanie 9. (1pkt) Pierwsza współrzędna wierzchołka paraboli o równaniu \(y=(x+2)(x-4)\) jest równa:

Zadanie 10. (1pkt) Funkcja kwadratowa, której zbiorem wartości jest przedział \((-\infty,-3\rangle\), może być określona wzorem:

Zadanie 11. (1pkt) Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeżeli \(f(3)=4\), to:

Zadanie 12. (1pkt) Parabola o wierzchołku \(W=(-3,5)\) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:

Zadanie 13. (1pkt) Dana jest funkcja kwadratowa \(f(x)=-2(x+5)(x-11)\). Wskaż maksymalny przedział, w którym funkcja \(f\) jest rosnąca:

Zadanie 14. (1pkt) Funkcja kwadratowa jest określona wzorem \(f(x)=(x-1)(x-9)\). Wynika stąd, że funkcja \(f\) jest rosnąca w przedziale:

Zadanie 15. (1pkt) Jeśli funkcja kwadratowa \(f(x)=x^2+2x+3a\) nie ma ani jednego miejsca zerowego, to liczba \(a\) spełnia warunek:

Dodaj komentarz