Równania trzeciego i wyższego stopnia - zadania
Zadanie 1. (1pkt) Równanie \((x+5)(x-3)(x^2+1)=0\) ma:
A. dwa rozwiązania: \(x=-5,\;x=3\)
B. dwa rozwiązania: \(x=-3,\;x=5\)
C. cztery rozwiązania: \(x=-5,\;x=-1,\;x=1,\;x=3\)
D. cztery rozwiązania: \(x=-3,\;x=-1,\;x=1,\;x=5\)
Wyjaśnienie:
Równanie jest przedstawione w formie iloczynowej, tak więc aby całość była równa zero, to tak naprawdę wyrażenie w którymś z nawiasów musi być równe zero:
$$(x+5)(x-3)(x^2+1)=0 \\
x+5=0 \quad\lor\quad x-3=0 \quad\lor\quad x^2+1=0 \\
x=-5 \quad\lor\quad x=3 \quad\lor\quad x^2=-1$$
Z racji tego, że nie istnieje żadna liczba podniesiona do kwadratu, która dałaby wynik ujemny, to z równania \(x^2=-1\) nie otrzymamy żadnych rozwiązań. To oznacza, że to całe równanie ma tylko dwa rozwiązania: \(x=-5\) oraz \(x=3\).
Zadanie 4. (2pkt) Rozwiąż równanie \(x(x^2-2x+3)=0\).
Wyjaśnienie:
Krok 1. Wypisanie rozwiązań równania.
Równanie mamy przedstawione w postaci iloczynowej, tak więc aby wyznaczyć jego rozwiązania musimy przyrównać poszczególne wyrażenia do zera:
$$x(x^2-2x+3)=0 \\
x=0 \quad\lor\quad x^2-2x+3=0$$
Krok 2. Obliczenie powstałej równości kwadratowej za pomocą delty.
Aby poznać rozwiązania z drugiej części naszego równania \((x^2-2x+3=0)\) musimy skorzystać z metody delty, tak więc:
Współczynniki: \(a=1,\;b=-2,\;c=3\)
$$Δ=b^2-4ac=(-2)^2-4\cdot1\cdot3=4-12=-8$$
Krok 3. Interpretacja otrzymanych wyników.
Skoro delta wyszła nam ujemna, to znaczy że z tej części równania nie mamy żadnych rozwiązań. Nie oznacza to jednak, że całe równanie nie ma rozwiązań, bo rozwiązanie \(x=0\) obliczone w pierwszym kroku jest nadal aktualne i jest to jednocześnie jedyne rozwiązanie naszego równania.
Wyjaśnienie punktacji:
Przyznaj sobie:
0 pkt
• Gdy brakuje jakiegokolwiek postępu prowadzącego do rozwiązania zadania.
1 pkt
• Gdy obliczysz, że rozwiązaniem równania jest \(x=0\) (patrz: Krok 1.), ale nie rozwiążesz równania kwadratowego lub nie zinterpretujesz otrzymanej ujemnej delty.
2 pkt
• Gdy otrzymasz oczekiwany wynik.
Zadanie 5. (2pkt) Rozwiąż równanie \((4-x)(x^2+2x-15)=0\).
Odpowiedź
\(x=-5 \quad\lor\quad x=3 \quad\lor\quad x=4\)
Wyjaśnienie:
Krok 1. Zapisanie odpowiednich równań.
Aby równanie dało wynik równy zero, to "wyzerować" je musi albo pierwszy, albo drugi nawias. To oznacza, że:
$$4-x=0 \quad\lor\quad x^2+2x-15=0$$
Krok 2. Rozwiązanie powstałych równań.
Powstały nam dwie równania, które musimy rozwiązać. Pierwsze równanie jest proste:
$$4-x=0 \\
x=4$$
Aby rozwiązać drugie równanie posłużymy się tzw. metodą delty:
Współczynniki: \(a=1,\;b=2,\;c=-15\)
$$Δ=b^2-4ac=2^2-4\cdot1\cdot(-15)=4-(-60)=4+60=64 \\
\sqrt{Δ}=\sqrt{64}=8$$
$$x_{1}=\frac{-b-\sqrt{Δ}}{2a}=\frac{-2-8}{2\cdot1}=\frac{-10}{2}=-5 \\
x_{2}=\frac{-b+\sqrt{Δ}}{2a}=\frac{-2+8}{2\cdot1}=\frac{6}{2}=3$$
Rozwiązaniami naszego całego równania są więc trzy liczby: \(x=-5 \quad\lor\quad x=3 \quad\lor\quad x=4\).
Wyjaśnienie punktacji:
Przyznaj sobie:
0 pkt
• Gdy brakuje jakiegokolwiek postępu prowadzącego do rozwiązania zadania.
1 pkt
• Gdy rozbijesz zapis na dwa równania \(4-x=0\) oraz \(x^2+2x-15=0\).
ALBO
• Gdy zapiszesz, że tylko jedno z rozwiązań.
2 pkt
• Gdy otrzymasz oczekiwany wynik.
świetna robota!!
fajne zadania, tylko czy są one na poziomie maturalnym? gdy je robię to nie mam żadnych problemów, ale jak zaczynam robić arkusz maturalny to to wszystko przestaje być takie proste. ale to może po prostu problem we mnie. jak już mówiłem, fajne te zadania
To jak najbardziej jest poziom maturalny – ba, to są zadania wyjęte wprost z matur! :D