Graniastosłupy i ostrosłupy – zadania maturalne

Graniastosłupy i ostrosłupy - zadania

Zadanie 1. (1pkt) Objętość sześcianu jest równa \(27cm^3\). Jaka jest suma długości wszystkich krawędzi tego sześcianu?

Zadanie 2. (1pkt) Graniastosłup ma \(15\) krawędzi. Ile wierzchołków ma ten graniastosłup?

Zadanie 3. (1pkt) Pole powierzchni całkowitej sześcianu jest równe \(54\). Długość przekątnej tego sześcianu jest równa:

Zadanie 4. (1pkt) W graniastosłupie prawidłowym trójkątnym wszystkie krawędzie są tej samej długości. Suma długości wszystkich krawędzi jest równa \(90\). Wtedy pole powierzchni całkowitej tego graniastosłupa jest równe:

Zadanie 5. (1pkt) Dany jest sześcian \(ABCDEFGH\). Siatką ostrosłupa czworokątnego \(ABCDE\) jest:



matura z matematyki

Zadanie 6. (1pkt) Pole powierzchni jednej ściany sześcianu jest równe \(4\). Objętość tego sześcianu jest równa:

Zadanie 7. (1pkt) Objętość sześcianu jest równa \(64\). Pole powierzchni całkowitej tego sześcianu jest równe:

Zadanie 8. (1pkt) Liczba wszystkich krawędzi graniastosłupa jest o \(10\) większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest:

Zadanie 9. (1pkt) Liczba wszystkich krawędzi graniastosłupa jest równa \(24\). Wtedy liczba jego wierzchołków jest równa:

Zadanie 10. (1pkt) Jeżeli ostrosłup ma \(10\) krawędzi, to liczba ścian bocznych jest równa:

Zadanie 11. (1pkt) Objętość ostrosłupa prawidłowego czworokątnego jest równa \(432\), a krawędź podstawy tego ostrosłupa ma długość \(12\). Wysokość tego ostrosłupa jest równa:

Zadanie 12. (1pkt) Ostrosłup i graniastosłup mają równe pola podstaw i równe wysokości. Objętość ostrosłupa jest równa \(81\sqrt{3}\). Objętość graniastosłupa jest równa:

Zadanie 13. (1pkt) Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą \(8\). Pole powierzchni całkowitej tego graniastosłupa jest równe:

Zadanie 14. (1pkt) Graniastosłup o podstawie ośmiokąta ma dokładnie:

Zadanie 15. (1pkt) W ostrosłupie czworokątnym, w którym wszystkie krawędzie mają tę samą długość, kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ma miarę:

Zadanie 16. (1pkt) Przekątna ściany sześcianu ma długość \(2\). Pole powierzchni całkowitej tego sześcianu jest równe:

Zadanie 17. (1pkt) Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).



matura z matematyki



Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt \(α\) o mierze:

Zadanie 18. (1pkt) Podstawą ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest kwadrat \(ABCD\). Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi. Miara kąta \(ASC\) jest równa:

Zadanie 19. (1pkt) Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości \(2\), a przekątna ściany bocznej ma długość \(3\) (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę \(α\).



matura z matematyki



Wtedy wartość \(sin\frac{α}{2}\) jest równa:

Zadanie 20. (1pkt) Różnica liczby krawędzi i liczby wierzchołków ostrosłupa jest równa \(11\). Podstawą tego ostrosłupa jest:

Zadanie 21. (1pkt) Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest \(3\) razy dłuższa od krawędzi podstawy, jest równe \(140\). Zatem krawędź podstawy tego graniastosłupa jest równa:

Zadanie 22. (4pkt) Podstawą ostrosłupa \(ABCD\) jest trójkąt \(ABC\). Krawędź \(AD\) jest wysokością ostrosłupa (zobacz rysunek).



matura z matematyki



Oblicz objętość ostrosłupa \(ABCD\), jeżeli wiadomo, że \(|AD|=12\), \(|BC|=6\), \(|BD|=|CD|=13\).

Zadanie 23. (4pkt) Dany jest graniastosłup prawidłowy trójkątny \(ABCDEF\) o podstawach \(ABC\) i \(DEF\) i krawędziach bocznych \(AD\), \(BE\) i \(CF\). Oblicz pole trójkąta \(ABF\) wiedząc, że \(|AB|=10\) i \(|CF|=11\). Narysuj ten graniastosłup i zaznacz na nim trójkąt \(ABF\).

Zadanie 24. (4pkt) Punkty \(K\), \(L\), i \(M\) są środkami krawędzi \(BC\), \(HG\) i \(AE\) sześcianu \(ABCDEFGH\) o krawędzi długości \(1\) (zobacz rysunek). Oblicz pole trójkąta \(KLM\).

matura z matematyki

Zadanie 25. (4pkt) Podstawą ostrosłupa \(ABCDW\) jest prostokąt \(ABCD\). Krawędź boczna \(DW\) jest wysokością tego ostrosłupa. Krawędzie boczne \(AW\), \(BW\) i \(CW\) mają następujące długości: \(|AW|=6\), \(|BW|=9\), \(|CW|=7\). Oblicz objętość tego ostrosłupa.



matura z matematyki

Zadanie 26. (4pkt) Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120°\) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.

Zadanie 27. (4pkt) W graniastosłupie prawidłowym czworokątnym \(ABCDEFGH\) przekątna \(AC\) podstawy ma długość \(4\). Kąt \(ACE\) jest równy \(60°\). Oblicz objętość ostrosłupa \(ABCDE\) przedstawionego na poniższym rysunku.



matura z matematyki

Zadanie 28. (4pkt) Dany jest graniastosłup prawidłowy trójkątny \(ABCDEF\) o podstawach \(ABC\) i \(DEF\) i krawędziach bocznych \(AD\), \(BE\) i \(CF\) (zobacz rysunek). Długość krawędzi podstawy \(AB\) jest równa \(8\), a pole trójkąta \(ABF\) jest równe \(52\). Oblicz objętość tego graniastosłupa.



matura z matematyki

Zadanie 29. (4pkt) W ostrosłupie prawidłowym czworokątnym \(ABCDS\) o podstawie \(ABCD\) i wierzchołku \(S\) trójkąt \(ACS\) jest równoboczny i ma bok długości \(8\). Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).



matura z matematyki

Zadanie 30. (4pkt) Pole podstawy prawidłowego ostrosłupa czworokątnego jest równe \(100cm^2\), a jego pole powierzchni bocznej jest równe \(260cm^2\). Oblicz objętość tego ostrosłupa.

Zadanie 31. (4pkt) Podstawą graniastosłupa \(ABCDEFGH\) jest prostokąt \(ABCD\) (zobacz rysunek), którego krótszy bok ma długość \(3\). Przekątna prostokąta \(ABCD\) tworzy z jego dłuższym bokiem kąt \(30°\). Przekątna \(HB\) graniastosłupa tworzy z płaszczyzną jego podstawy kąt \(60°\). Oblicz objętość tego graniastosłupa.



matura z matematyki

Zadanie 32. (2pkt) Długość krawędzi sześcianu jest o \(2\) krótsza od długości jego przekątnej. Oblicz długość przekątnej tego sześcianu.

Zadanie 33. (4pkt) Objętość ostrosłupa prawidłowego trójkątnego \(ABCS\) (tak jak na rysunku) jest równa \(72\), a promień okręgu wpisanego w podstawę \(ABC\) tego ostrosłupa jest równy \(2\). Oblicz tangens kąta między wysokością tego ostrosłupa i jego ścianą boczną.



matura z matematyki

Zadanie 34. (4pkt) W ostrosłupie prawidłowym czworokątnym \(ABCDS\) (zobacz rysunek) przekątna \(AC\) podstawy ma długość \(4\sqrt{2}\). Kąt \(ASC\) między przeciwległymi krawędziami bocznymi ostrosłupa ma miarę \(60°\). Oblicz objętość tego ostrosłupa.



matura z matematyki

Zadanie 35. (4pkt) Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa \(22\), a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy \(\frac{4\sqrt{6}}{5}\). Oblicz objętość tego ostrosłupa.



matura z matematyki

Zadanie 36. (4pkt) Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.

Zadanie 37. (5pkt) Objętość ostrosłupa prawidłowego trójkątnego \(ABCS\) jest równa \(27\sqrt{3}\). Długość krawędzi \(AB\) podstawy ostrosłupa jest równa \(6\) (zobacz rysunek). Oblicz pole powierzchni całkowitej tego ostrosłupa.



matura z matematyki

Zadanie 38. (4pkt) Podstawą ostrosłupa \(ABCDS\) jest prostokąt, którego boki pozostają w stosunku \(3:4\), a pole jest równe \(192\) (zobacz rysunek). Punkt \(E\) jest wyznaczony przez przecinające się przekątne podstawy, a odcinek \(SE\) jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem \(30°\). Oblicz objętość ostrosłupa.



matura z matematyki

Zadanie 39. (5pkt) Podstawą ostrosłupa prawidłowego trójkątnego \(ABCS\) jest trójkąt równoboczny \(ABC\). Wysokość \(SO\) tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa \(27\). Oblicz pole powierzchni bocznej ostrosłupa \(ABCS\) oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.

Zadanie 40. (5pkt) Trójkąt równoboczny \(ABC\) jest podstawą ostrosłupa prawidłowego \(ABCS\), w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(60°\), a krawędź boczna ma długość \(7\) (zobacz rysunek). Oblicz objętość tego ostrosłupa.



matura z matematyki

Zadanie 41. (4pkt) W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa \(\frac{5\sqrt{3}}{4}\), a pole powierzchni bocznej tego ostrosłupa jest równe \(\frac{15\sqrt{3}}{4}\). Oblicz objętość tego ostrosłupa.

Zadanie 42. (4pkt) Jacek bawi się sześciennymi klockami o krawędzi \(2cm\). Zbudował z nich jeden duży sześcian o krawędzi \(8cm\) i wykorzystał do tego wszystkie swoje klocki. Następnie zburzył budowlę i ułożył z tych klocków drugą bryłę – graniastosłup prawidłowy czworokątny. Wtedy okazało się, że został mu dokładnie jeden klocek, którego nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej pierwszej ułożonej bryły do pola powierzchni całkowitej drugiej bryły i wynik podaj w postaci ułamka nieskracalnego.

Dodaj komentarz