Rozwiązanie
Krok 1. Obliczenie pola powierzchni całkowitego pojedynczego prostopadłościanu.
Możemy oczywiście liczyć pole powierzchni całkowitej fragmentami (dodając pola poszczególnych ścian i ich wycinków), aczkolwiek istnieje nieco sprytniejszy sposób. Pole powierzchni całkowitej tej sklejonej bryły będzie równa polu powierzchni dwóch naszych prostopadłościanów, a całość będzie pomniejszona o pole dwóch ścian (a w zasadzie o jedną całą ścianę i jeden jej fragment), które się ze sobą stykają.
Pole powierzchni pojedynczego prostopadłościanu jest równe:
$$P_{c}=2\cdot(ab+ac+bc) \\
P_{c}=2\cdot(5\cdot7+5\cdot9+7\cdot9) \\
P_{c}=2\cdot(35+45+63) \\
P_{c}=2\cdot143 \\
P_{c}=286$$
Krok 2. Obliczenie pola powierzchni całkowitej powstałej bryły.
Mamy dwa takie prostopadłościany, zatem suma ich pól powierzchni będzie równa \(2\cdot286cm^2=572cm^2\).
Od sumy pól powierzchni dwóch prostopadłościanów musimy odjąć dwa pola powierzchni o wymiarach \(5cm\times7cm\), którymi sklejone są te dwie bryły. Pole powierzchni naszej bryły będzie więc równe:
$$P_{c}=572-2\cdot5\cdot7 \\
P_{c}=572-70 \\
P_{c}=502$$
pomocne dzienkówa
Dlaczego dwa pola powierzchni?
No bo są tak jakby dwa graniastosłupy ;)