W pojemniku znajdują się niebieskie, czarne i zielone piłeczki. Czarnych piłeczek jest o 20% mniej niż niebieskich

W pojemniku znajdują się niebieskie, czarne i zielone piłeczki. Czarnych piłeczek jest o \(20\%\) mniej niż niebieskich, a niebieskich – o \(6\) mniej niż zielonych. Niebieskich i zielonych piłeczek jest łącznie o \(48\) więcej niż czarnych. Ile jest wszystkich piłeczek w tym pojemniku?

Rozwiązanie

Krok 1. Wprowadzenie poprawnych oznaczeń.
Tutaj możemy tak naprawdę tworzyć bardzo różnorodne oznaczenia, ale patrząc na kontekst zadania to najprościej będzie chyba odnosić się zawsze do niebieskich piłek:
\(x\) - liczba niebieskich piłeczek
\(0,8x\) - liczba czarnych piłeczek
\(x+6\) - liczba zielonych piłeczek

Krok 2. Zapisanie i rozwiązanie równania.
Skoro niebieskich i zielonych piłeczek jest łącznie o \(48\) więcej niż czarnych, to powstaje nam równanie:
$$niebieskie+zielone=czarne+48 \\
x+(x+6)=0,8x+48 \\
2x+6=0,8x+48 \\
1,2x=42 \\
x=35$$

Krok 3. Obliczenie liczby poszczególnych piłeczek.
Wiemy już, że mamy \(35\) niebieskich piłeczek. Teraz musimy policzyć pozostałe kolory:
Czarne: \(0,8\cdot35=28\)
Zielone: \(35+6=41\)

Krok 4. Obliczenie łącznej liczby wszystkich piłeczek.
Wszystkich piłeczek mamy zatem:
$$35+28+41=104$$

Odpowiedź

W pojemniku znajdowały się \(104\) piłeczki.

Dodaj komentarz