Rozwiązanie
Krok 1. Obliczenie liczby wszystkich zdarzeń elementarnych.
W pierwszym losowaniu możemy trafić na jedną z ośmiu cyfr. W drugim losowaniu możemy trafić już tylko na jedną z siedmiu cyfr, bo odpada nam ta cyfra, która była wylosowana za pierwszym razem (losowanie jest bez zwracania). To oznacza, że zgodnie z regułą mnożenia:
$$|Ω|=8\cdot7=56$$
Krok 2. Obliczenie liczby zdarzeń sprzyjających.
Zdarzeniem sprzyjającym jest sytuacja w której otrzymana liczba (utworzona z wylosowanych cyfr) będzie podzielna przez \(4\). Wypiszmy sobie takie przypadki:
$$(1,2), (1,6), (2,4), (2,8), (3,2), (3,6), (4,8), \\
(5,2), (5,6), (6,4), (6,8), (7,2), (7,6), (8,4)$$
Warto tutaj zwrócić uwagę, że przykładowo nie da się wylosować zdarzenia \((4,4)\) czy też \((8,8)\), bo cyfry losujemy bez zwracania, czyli cyfry nie mogą się powtarzać. Mamy więc 14 takich liczb, zatem \(|A|=14\).
Krok 3. Obliczenie prawdopodobieństwa.
$$P(A)=\frac{|A|}{|Ω|}=\frac{14}{56}=\frac{1}{4}$$
A jeszcze 82 i 86
82 i 86 nie są podzielne przez 4 ;)
Wypisane jest 12 liczb i brakuje jeszcze 48 i 84 aby było ich 14 :) W książce poprawna odp to 15
Ale przecież są tu wypisane 48 oraz 84 :) Koniec końców takich liczb jest 14 i to jest na pewno dobra odpowiedź ;)