W trójkącie ABC punkt D leży na boku BC, a punkt E leży na boku AB. Odcinek DE jest równoległy

W trójkącie \(ABC\) punkt \(D\) leży na boku \(BC\), a punkt \(E\) leży na boku \(AB\). Odcinek \(DE\) jest równoległy do boku \(AC\), a ponadto \(|BD|=10\), \(|BC|=12\) i \(|AC|=24\) (zobacz rysunek).

2 trójkącie ABC punkt D leży na boku BC a punkt E leży na boku AB

Długość odcinka \(DE\) jest równa:

\(22\)
\(20\)
\(12\)
\(11\)
Rozwiązanie:

Skoro odcinek \(DE\) jest równoległy do boku \(CA\), to trójkąty \(ABC\) oraz \(EBD\) są trójkątami podobnymi (na mocy cechy kąt-kąt-kąt). Stosunek boków odpowiadających sobie będzie taki sam, co pozwoli ułożyć nam następujące równanie:
$$\frac{|DE|}{|CA|}=\frac{|BD|}{|BC|} \\
\frac{|DE|}{24}=\frac{10}{10+2} \\
\frac{|DE|}{24}=\frac{10}{12} \quad\bigg/\cdot24 \\
|DE|=\frac{240}{12} \\
|DE|=20$$

Odpowiedź:

B. \(20\)

Dodaj komentarz

Bądź pierwszy!