Rozwiązanie
Krok 1. Sporządzenie rysunku pomocniczego.
Narysujmy sobie przynajmniej szkic tej całej sytuacji, tak aby potem mieć lepszy obraz tego co trzeba będzie za chwilę policzyć. Sytuacja z treści zadania wygląda mniej więcej w ten sposób:

Krok 2. Wyznaczenie współrzędnych punktu \(A\).
Punkt A jest miejscem przecięcia się dwóch prostych podanych w treści zadania. Z geometrycznej interpretacji układu równań wynika, że poznamy współrzędne punkt \(A\) w momencie, gdy rozwiążemy następujący układ równań:
\begin{cases}
y=\frac{1}{2}x-1 \\
y=2x-4
\end{cases}
Korzystając z metody podstawiania, otrzymamy następujące równanie:
$$\frac{1}{2}x-1=2x-4 \\
-1,5x-1=-4 \\
-1,5x=-3 \\
x=2$$
Znamy już pierwszą współrzędną punktu \(A\). Aby poznać drugą współrzędną, wystarczy podstawić obliczone przed chwilą \(x=2\) do jednego z równań z układu, np. do drugiego:
$$y=2\cdot2-4 \\
y=4-4 \\
y=0$$
To oznacza, że \(A=(2;0)\).
Krok 3. Wyznaczenie współrzędnych punktu \(C\).
Przekątne równoległoboku przecinają się w połowie swojej długości, więc punkt \(S\) jest środkiem przekątnej \(AC\). Znamy współrzędne punktu \(A\), znamy też współrzędne środka \(S\), więc z poznaniem współrzędnych punktu \(C\) pomoże nam wzór na środek odcinka:
$$S=\left(\frac{x_{A}+x_{C}}{2};\frac{y_{A}+y_{C}}{2}\right)$$
Znając współrzędne obydwu punktów wystarczy podstawić te dane do wzoru. Dla przejrzystości obliczeń dobrze jest obliczyć sobie oddzielnie współrzędną iksową i igrekową:
$$x_{S}=\frac{x_{A}+x_{C}}{2} \\
9=\frac{2+x_{C}}{2} \\
18=2+x_{C} \\
x_{C}=16 \\
\quad \\
y_{S}=\frac{y_{A}+y_{C}}{2} \\
11=\frac{0+y_{C}}{2} \\
y_{C}=22$$
To oznacza, że \(C=(16;22)\).
Krok 4. Wyznaczenie równania prostej \(BC\).
Prosta \(BC\) będzie prostą równoległą do \(AD\), która będzie przechodzić przez wyznaczony przed chwilą punkt \(C\). Dwie proste są względem siebie równoległe tylko wtedy, gdy mają jednakowy współczynnik kierunkowy \(a\). Skoro prosta \(AD\) wyraża się równaniem \(y=2x-4\) to prosta \(BC\) będzie wyrażać się równaniem \(y=2x+b\). Brakujący współczynnik \(b\) poznamy podstawiając do tego wyrażenia współrzędne punktu \(C=(16;22)\), zatem:
$$22=2\cdot16+b \\
22=32+b \\
b=-10$$
Tym samym prosta \(BC\) wyraża się równaniem \(y=2x-10\).
Krok 5. Wyznaczenie współrzędnych punktu \(B\).
Punkt B będzie miejscem przecięcia się prostej \(AB\) oraz wyznaczonej przed chwilą prostej \(BC\). Musimy więc postąpić podobnie jak przy wyznaczeniu współrzędnych punktu \(A\), czyli rozwiązać następujący układ równań:
\begin{cases}
y=\frac{1}{2}x-1 \\
y=2x-10
\end{cases}
Korzystając z metody podstawiania, otrzymamy:
$$\frac{1}{2}x-1=2x-10 \\
-1,5x-1=-10 \\
-1,5x=-9 \\
x=6$$
Aby poznać drugą współrzędną punktu \(B\), wystarczy podstawić \(x=6\) do jednego z równań z układu, np. drugiego:
$$y=2\cdot6-10 \\
y=12-10 \\
y=2$$
Tym samym możemy stwierdzić, że \(B=(6;2)\).