Uczniowie klas trzecich pewnego gimnazjum pojechali na wycieczkę pociągiem. W każdym zajętym przez nich przedziale

Uczniowie klas trzecich pewnego gimnazjum pojechali na wycieczkę pociągiem. W każdym zajętym przez nich przedziale było ośmioro uczniów. Jeśli w każdym przedziale byłoby sześcioro uczniów, to zajęliby oni o \(3\) przedziały więcej. Ilu uczniów pojechało na tę wycieczkę?

Rozwiązanie

Krok 1. Wprowadzenie poprawnych oznaczeń.
\(x\) - liczba ośmioosobowych przedziałów
\(8x\) - liczba uczniów w pociągu z ośmioosobowymi (bo w każdym przedziale jest ośmiu uczniów)

\(x+3\) - liczba sześcioosobowych przedziałów
\(6(x+3)\) - liczba uczniów w pociągu z sześcioosobowymi przedziałami

Krok 2. Obliczenie liczby przedziałów ośmioosobowych.
Liczba uczniów jest niezmienna, więc między wartościami \(8x\) oraz \(6(x+3)\) możemy postawić znak równości. To pozwoli nam obliczyć niewiadomą \(x\), czyli liczbę przedziałów ośmioosobowych.
$$8x=6(x+3) \\
8x=6x+18 \\
2x=18 \\
x=9$$

To oznacza, że jest dziewięć przedziałów ośmioosobowych.

Krok 3. Obliczenie liczby uczniów.
Skoro wiemy, że było dziewięć przedziałów ośmioosobowych, to znaczy, że uczniów było:
$$9\cdot8=72$$

Odpowiedź

Na wycieczkę pojechało \(72\) uczniów.

2 komentarzy
Inline Feedbacks
View all comments
antek2009

skąd to 8x?

Last edited 15 dni temu by antek2009