Trzy proste przecinające się w sposób przedstawiony na rysunku tworzą trójkąt ABC. Uzasadnij, że trójkąt ABC

Trzy proste przecinające się w sposób przedstawiony na rysunku tworzą trójkąt \(ABC\). Uzasadnij, że trójkąt \(ABC\) jest równoboczny.

egzamin ósmoklasisty

Rozwiązanie

Krok 1. Wyznaczenie miary kąta \(CAB\).
Kąt \(CAB\) jest kątem przyległym do kąta o mierze \(120°\), a z własności kątów podobnych wiemy, że suma ich miar wynosi \(180°\). To oznacza, że:
$$|\sphericalangle CAB|=180°-120°=60°$$

Krok 2. Obliczenie miary kąta \(ABC\) oraz \(ACB\).
Zacznijmy od kąta \(ABC\). Jest on kątem wierzchołkowym do kąta \(α\) znajdującego się przy wierzchołku \(B\), zatem możemy zapisać, że:
$$|\sphericalangle ABC|=α$$

Mamy więc następującą sytuację:
egzamin ósmoklasisty

O naszym trójkącie wiemy, że ma w sobie kąt \(60°\) oraz jakieś dwa kąty o jednakowej mierze \(α\). Spróbujmy zatem wyznaczyć wartość tej \(α\). Wiemy, że suma kątów w trójkącie jest równa \(180°\), zatem prawdziwą będzie równość:
$$2α+60°=180° \\
2α=120° \\
α=60°$$

Czyli:
$$|\sphericalangle ABC|=60° \\
|\sphericalangle ACB|=60°$$

Krok 3. Zakończenie dowodzenia.
Z naszej analizy wynika, że wszystkie kąty trójkąta \(ABC\) mają miarę \(60°\). Jest to charakterystyczna cecha trójkąta równobocznego, zatem udowadniając miary tych poszczególnych kątów możemy stwierdzić, że trójkąt \(ABC\) jest jak najbardziej trójkątem równobocznym.

Odpowiedź

Udowodniono obliczając miary poszczególnych kątów.

Dodaj komentarz