Rozwiązanie
Krok 1. Obliczenie długości dolnej i górnej podstawy.
Zacznijmy od obliczenia długości górnej podstawy, czyli odcinka \(CD\). Wiemy, że jest to odcinek \(2\) razy dłuższy od odcinka \(AE\), zatem:
$$|CD|=2\cdot4cm \\
|CD|=8cm$$
Nasz trapez jest równoramienny, zatem jakbyśmy od punktu \(C\) poprowadzili wysokość, która przetnie odcinek \(AB\) w punkcie \(F\), to otrzymamy odcinek \(FB\), który będzie równy odcinkowi \(AE\), czyli także będzie miał on długość \(4cm\).
To z kolei oznacza, że dolna podstawa \(AB\) będzie mieć długość:
$$|AB|=4cm+8cm+4cm \\
|AB|=16cm$$
Krok 2. Obliczenie wysokości trapezu (czyli długości odcinka \(ED\)).
Wiemy już, że dolna podstawa ma długość \(a=16cm\), górna ma długość \(b=8cm\), a pole trapezu jest równe \(P=72cm^2\). Korzystając więc ze wzoru na pole trapezu możemy bez przeszkód obliczyć wysokość naszej figury:
$$P=\frac{1}{2}(a+b)\cdot h \\
72cm^2=\frac{1}{2}\cdot(16cm+8cm)\cdot h \\
72cm^2=\frac{1}{2}\cdot24cm\cdot h \\
72cm^2=12cm\cdot h \\
h=6cm$$
Krok 3. Obliczenie pola trójkąta \(AED\).
Wiemy już, że wysokość trapezu wynosi \(6cm\), czyli \(|ED|=6cm\). Dolna przyprostokątna \(|AE|\) ma długość \(4cm\), zatem pole trójkąta \(AED\) będzie równe:
$$P=\frac{1}{2}ah \\
P=\frac{1}{2}\cdot4cm\cdot6cm \\
P=12cm^2$$
dziękuję!
Dziękuję
Wielkie dzięki :-)
Skąd wiedzieć kiedy zastosować równanie? Mam z tym problem w każdym zadaniu tego typu :(, a same obliczenia umiem
Ale z jakim równaniem masz problem? Tutaj po prostu korzystamy z własności trapezu równoramiennego i wszystkie równania wynikają właśnie z porównywania do siebie długości boków czy też z obliczania pola powierzchni :)
O właśnie to ogarnąłem, dzięki xD, to było podstawienie liczb pod wzory jedynie, a nie zwykłe równania. Nie ogarnąłem ,ze pod P wpisuje też się liczbę. Jeśli dobrze rozumiem to 6 mogło wyjść nie tylko z równania 72:12, ale także przez to, ze 6*12 to 72?
Tak, dzielenie jest przeciwieństwem mnożenia, więc jeśli 6*12=72, to analogicznie 72:12=6 ;)
Świetna strona