Promień okręgu opisanego na trójkącie równobocznym jest równy 8. Wysokość tego trójkąta jest równa

Promień okręgu opisanego na trójkącie równobocznym jest równy \(8\). Wysokość tego trójkąta jest równa:

\(4\sqrt{3}\)
\(8\sqrt{3}\)
\(12\)
\(6\)
Rozwiązanie:

Zgodnie z własnościami okręgów opisanych na trójkącie równobocznym wiemy, że promień okręgu jest równy \(\frac{2}{3}\) wysokości tego trójkąta. Zatem:
$$\frac{2}{3}h=r \\
\frac{2}{3}h=8 \quad\bigg/\cdot\frac{3}{2} \\
h=12$$

Odpowiedź:

C. \(12\)

Dodaj komentarz

Twój adres email nie zostanie opublikowany.