Pole podstawy prawidłowego ostrosłupa czworokątnego jest równe \(100cm^2\), a jego pole powierzchni bocznej jest równe \(260cm^2\). Oblicz objętość tego ostrosłupa.
Do obliczenia objętości potrzebujemy miarę wysokości ostrosłupa, czyli odcinka \(SO\). Obliczmy ją z Twierdzenia Pitagorasa, ale zanim to nastąpi to musimy poznać miary odcinków \(OE\) oraz \(SE\).
Krok 1. Obliczenie długości krawędzi podstawy oraz odcinka \(OE\).
Ostrosłup prawidłowy czworokątny ma w swojej podstawie kwadrat. Skoro pole powierzchni jest równe \(100cm^2\), to długość krawędzi podstawy jest równa \(10cm\).
Odcinek \(OE\) jest równy połowie długości podstawy, czyli \(|OE|=5cm\).
Pole powierzchni bocznej jest równe \(260cm^2\). Skoro mamy cztery identyczne trójkątne ściany, a każda z nich ma w podstawie trójkąt, to z tego pola powierzchni będziemy w stanie wyznaczyć wysokość każdego takiego trójkąta, czyli nasz odcinek \(SE\).
$$P_{b}=4\cdot\frac{1}{2}ah \\
260cm^2=4\cdot\frac{1}{2}\cdot10cm\cdot h \\
260cm^2=20cm\cdot h \\
h=13cm$$
Mamy już więc kolejną długość \(|SE|=13cm\).
Skorzystamy tutaj z Twierdzenia Pitagorasa na trójkącie \(SOE\).
$$a^2+b^2=c^2 \\
|OE|^2+|SO|^2=|SE|^2 \\
(5cm)^2+|SO|^2=(13cm)^2 \\
25cm^2+|SO|^2=169cm^2 \\
|SO|^2=144cm^2 \\
|SO|=12cm \quad\lor\quad |SO|=-12cm$$
Wartość ujemną oczywiście odrzucamy, bo wysokość ostrosłupa nie może być ujemna.
Znamy pole podstawy, mamy obliczoną wysokość ostrosłupa, więc wystarczy już tylko podstawić dane do wzoru:
$$V=\frac{1}{3}P_{p}\cdot H \\
V=\frac{1}{3}\cdot100cm^2\cdot12cm \\
V=400cm^3$$
\(V=400cm^3\)