Podstawy trapezu prostokątnego mają długości \(6\) i \(10\) oraz tangens kąta ostrego jest równy \(3\). Oblicz pole tego trapezu.
Długość odcinka \(AE\) jest identyczna co długość odcinka \(DC\), więc:
$$|AE|=|DC|=6$$
Długość odcinka \(EB\) jest różnicą między dłuższą i krótszą podstawą, więc:
$$|EB|=|AB|-|DC|=10-6=4$$
Aby móc obliczyć pole trapezu potrzebna nam jest znajomość jego wysokości. Musimy więc poznać długość odcinka \(AD\) lub \(CE\). Długości odcinka \(AD\) nie mamy jak wyliczyć, natomiast \(CE\) jesteśmy w stanie wyznaczyć korzystając z tangensa kąta ostrego, który zgodnie z treścią zadania jest równy \(3\). Z definicji tangensa wiemy, że tangens to stosunek długości przyprostokątnej leżącej naprzeciw kąta \(α\) do długości przyprostokątnej leżącej przy tym kącie. Zatem:
$$tgα=\frac{|CE|}{|EB|} \\
3=\frac{|CE|}{4} \\
|CE|=12$$
To oznacza, że wysokość naszego trapezu jest równa \(12\).
$$P=\frac{1}{2}\cdot(a+b)\cdot h \\
P=\frac{1}{2}\cdot(6+10)\cdot12 \\
P=\frac{1}{2}\cdot16\cdot12 \\
P=8\cdot12 \\
P=96$$
\(P=96\)