Podstawą graniastosłupa ABCDEFGH jest prostokąt ABCD, którego krótszy bok ma długość 3

Podstawą graniastosłupa \(ABCDEFGH\) jest prostokąt \(ABCD\) (zobacz rysunek), którego krótszy bok ma długość \(3\). Przekątna prostokąta \(ABCD\) tworzy z jego dłuższym bokiem kąt \(30°\). Przekątna \(HB\) graniastosłupa tworzy z płaszczyzną jego podstawy kąt \(60°\). Oblicz objętość tego graniastosłupa.

podstawą graniastosłupa ABCDEFGH jest prostokąt ABCD

Rozwiązanie:
Krok 1. Sporządzenie rysunku poglądowego.

Zaznaczmy sobie na rysunku kąty \(30°\) i \(60°\) oraz odpowiednie długości boków omówione w treści zadania:

podstawą graniastosłupa ABCDEFGH jest prostokąt ABCD

Wbrew pozorom już podczas zaznaczania odpowiednich długości można było popełnić spory błąd. Skąd wiemy, że to akurat boki \(AD\) oraz analogicznie \(BC\) są tymi krótszymi i akurat one mają długość \(3\)? Treść zadania nie sugeruje nam tego wprost, ale wynika to chociażby z własności trójkątów \(30°\), \(60°\), \(90°\), a takim jest trójkąt \(ABD\). W takich trójkątach dłuższą przyprostokątną jest ten bok, który znajduje się przy kącie \(30°\) i stąd też wiemy, że dłuższymi krawędziami są \(AB\) oraz analogicznie \(CD\), a krótszymi są \(AD\) oraz \(BC\).

Do obliczenia objętości będziemy potrzebowali znać długości boków prostokąta oraz wysokość całego graniastosłupa, zatem wyznaczmy po kolei każdą z wartości.

Krok 2. Obliczenie miary dłuższego boku prostokąta.

Do obliczenia długości, którą oznaczyliśmy sobie jako \(a\) skorzystamy z trójkąta \(ABD\). Użyjemy tutaj albo własności trójkąta \(30°, 60°, 90°\), albo funkcji tangensa:
$$tg30°=\frac{3}{a} \\
\frac{\sqrt{3}}{3}=\frac{3}{a}$$

Mnożąc na krzyż otrzymamy:
$$\sqrt{3}a=9 \\
a=\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}$$

Krok 3. Obliczenie długości przekątnej podstawy.

Ponownie spoglądamy na trójkąt \(ABD\). Do obliczenia długości przekątnej \(DB\) skorzystamy z Twierdzenia Pitagorasa i z miary boku prostokąta, którą obliczyliśmy przed chwilą:
$$3^2+(3\sqrt{3})^2=|DB|^2 \\
9+9\cdot3=|DB|^2 \\
9+27=|DB|^2 \\
|DB|^2=36 \\
|DB|=6$$

Krok 4. Obliczenie wysokości graniastosłupa.

Tym razem interesuje nas trójkąt \(DBH\). Odcinek \(DH\), który oznaczyliśmy sobie jako \(H\) wyliczymy z funkcji tangensa (właśnie po to liczyliśmy przed chwilą długość przekątnej \(DB\)):
$$tg60°=\frac{H}{6} \\
\sqrt{3}=\frac{H}{6} \\
H=6\sqrt{3}$$

Krok 5. Obliczenie objętości graniastosłupa.

Znamy wszystkie potrzebne miary, więc możemy przejść do obliczeń objętości:
$$V=P_{p}\cdot H \\
V=3\cdot3\sqrt{3}\cdot6\sqrt{3} \\
V=9\sqrt{3}\cdot6\sqrt{3} \\
V=54\cdot3 \\
V=162$$

Odpowiedź:

\(V=162\)

Dodaj komentarz