Podobieństwo figur – zadania maturalne

Podobieństwo figur - zadania

Zadanie 1. (1pkt) Oblicz długość odcinka \(AE\) wiedząc, że \(AB||CD\) i \(|AB|=6\), \(|AC|=4\), \(|CD|=8\).

matura z matematyki

Zadanie 2. (1pkt) Odcinki \(AB\) i \(DE\) są równoległe. Długości odcinków \(CD\), \(DE\) i \(AB\) są odpowiednio równe \(1\), \(3\) i \(9\).

matura z matematyki

Długość odcinka \(AD\) jest równa:

Zadanie 3. (1pkt) Pionowy słupek o wysokości \(90cm\) rzuca cień o długości \(60cm\). W tej samej chwili stojąca obok wieża rzuca cień o długości \(12m\). Jaka jest wysokość wieży?

Zadanie 4. (1pkt) Pięciokąt \(ABCDE\) jest foremny. Wskaż trójkąt przystający do trójkąta \(ECD\):

matura z matematyki

Zadanie 5. (1pkt) Prostokąt \(ABCD\) o przekątnej długości \(2\sqrt{13}\) jest podobny do prostokąta o bokach długości \(2\) i \(3\). Obwód prostokąta \(ABCD\) jest równy:

Zadanie 6. (1pkt) Jeżeli trójkąty \(ABC\) i \(A'B'C'\) są podobne, a ich pola są, odpowiednio, równe \(25cm^2\) i \(50cm^2\), to skala podobieństwa \(\frac{A'B'}{AB}\) jest równa:

Zadanie 7. (1pkt) W trójkącie \(EFG\) bok \(EF\) ma długość \(21\). Prosta równoległa do boku \(EF\) przecina boki \(EG\) i \(FG\) trójkąta odpowiednio w punktach \(H\) oraz \(I\) (zobacz rysunek) w taki sposób, że \(|HI|=7\) i \(|GI|=3\). Wtedy długość odcinka \(FI\) jest równa:

matura z matematyki

Zadanie 8. (1pkt) Odcinki \(BC\) i \(DE\) są równoległe i \(|AE|=4\), \(|DE|=3\) (zobacz rysunek). Punkt \(D\) jest środkiem odcinka \(AB\). Długość odcinka \(BC\) jest równa:

matura z matematyki

Zadanie 9. (1pkt) Na rysunkach poniżej przedstawiono siatki dwóch ostrosłupów.

matura z matematyki

Pole powierzchni całkowitej ostrosłupa o krawędzi \(a\) jest dwa razy większe od pola powierzchni całkowitej ostrosłupa o krawędzi \(b\). Ile razy objętość ostrosłupa o krawędzi \(a\) jest większa od objętości ostrosłupa o krawędzi \(b\)?

Zadanie 10. (1pkt) Przedstawione na rysunku trójkąty są podobne.

matura z matematyki

Wówczas:

Zadanie 11. (1pkt) Przedstawione na rysunku trójkąty \(ABC\) i \(PQR\) są podobne. Bok \(AB\) trójkąta \(ABC\) ma długość:

matura z matematyki

Zadanie 12. (1pkt) Punkty \(D\) i \(E\) są środkami przyprostokątnych \(AC\) i \(BC\) trójkąta prostokątnego \(ABC\). Punkty \(F\) i \(G\) leżą na przeciwprostokątnej \(AB\) tak, że odcinki \(DF\) i \(EG\) są do niej prostopadłe (zobacz rysunek). Pole trójkąta \(BGE\) jest równe \(1\), a pole trójkąta \(AFD\) jest równe \(4\).

matura z matematyki

Zatem pole trójkąta \(ABC\) jest równe:

Zadanie 13. (1pkt) W trójkącie \(ABC\) punkt \(D\) leży na boku \(BC\), a punkt \(E\) leży na boku \(AB\). Odcinek \(DE\) jest równoległy do boku \(AC\), a ponadto \(|BD|=10\), \(|BC|=12\) i \(|AC|=24\) (zobacz rysunek).

matura z matematyki

Długość odcinka \(DE\) jest równa:

Zadanie 14. (2pkt) Trójkąty prostokątne równoramienne \(ABC\) i \(CDE\) są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku \(C\) jest prosty). Wykaż, że \(|AD|=|BE|\).

matura z matematyki

Dodaj komentarz