Rozwiązanie
Krok 1. Rozwiązanie pierwszej części zadania.
Jeżeli jest to trójkąt równoramienny, to kąty przy podstawie muszą mieć jednakową miarę. Możemy więc przyjąć, że zarówno kąt \(KLM\) jak i \(MKL\) mają miarę \(α\). Z treści zadania wynika, że kąt między ramionami, czyli kąt \(KML\), jest dwa razy większy, zatem ma on miarę \(2α\). Skoro więc suma kątów w trójkącie jest równa \(180°\), to otrzymamy równanie:
$$α+α+2α=180° \\
4α=180° \\
α=45°$$
Zgodnie z naszymi oznaczeniami kąt \(KLM\) to kąt o mierze \(α\), czyli ma on miarę \(45°\).
Krok 2. Rozwiązanie drugiej części zadania.
Kontynuując obliczenia z poprzedniego kroku widzimy, że skoro \(α=45°\), a nasz kąt \(KML\) ma miarę \(2α\), to miara tego kąta jest równa \(2\cdot45°=90°\). To oznacza, że nasz trójkąt jest trójkątem prostokątnym.
Czemu MKL skąd to?
Kąty przy podstawie to właśnie MKL oraz KLM :)