Rozwiązanie
Krok 1. Sporządzenie rysunku pomocniczego.
Spróbujmy nanieść znane nam miary długości na nasz rysunek. Nanieśmy też sobie od razu informację gdzie w tej siatce znajduje się wysokość graniastosłupa, bo ona będzie nam potrzebna do obliczenia objętości.
Skrzydełka na górze i na dole siatki są trójkątami prostokątnymi, który znajduje się w podstawie. Skąd jednak wiemy, że boki o długości \(12cm\) oraz \(13cm\) są podpisane dobrze, a nie np. w odwrotnej kolejności? Faktycznie nie jest to zapisane wprost który bok ma jaką długość, ale my wiemy, że długości \(12cm\) oraz \(13cm\) to najdłuższe boki trójkąta prostokątnego. W trójkącie prostokątnym najdłuższym bokiem jest zawsze przeciwprostokątna, stąd wiemy, że to ona ma konkretnie \(13cm\).
Krok 2. Obliczenie długości trzeciego boku trójkąta znajdującego się w podstawie.
Z treści zadania wiemy, że dwa boki trójkąta znajdującego się w podstawie mają długość \(12cm\) oraz \(13cm\). Możemy więc z Twierdzenia Pitagorasa obliczyć trzecią długość:
$$x^2+12^2=13^2 \\
x^2+144=169 \\
x^2=25 \\
x=5[cm]$$
To oznacza, że krótsza przyprostokątna (czyli najkrótsza krawędź podstawy graniastosłupa) ma długość \(5cm\).
Krok 3. Obliczenie wysokości graniastosłupa.
Teraz możemy przystąpić do obliczenia wysokości graniastosłupa. Jak ją wyznaczymy? Skorzystamy tutaj z tego iż zacieniowaną figurą jest trapez o polu powierzchni równym \(168cm^2\). Dolna podstawa trapezu zgodnie z rysunkiem ma długość \(5+h+5=10+h\), natomiast górna podstawa ma długość \(h\). Wysokość trapezu jest równa \(12cm\). To oznacza, że \(h\) jest już jedyną niewiadomą, zatem wyznaczymy ją w prosty sposób:
$$168=\frac{1}{2}(10+h+h)\cdot12 \\
168=(2h+10)\cdot6 \\
168=12h+60 \\
108=12h \\
h=9[cm]$$
Krok 4. Obliczenie pola podstawy.
W podstawie mamy trójkąt prostokątny o podstawie \(12cm\) i wysokości \(5cm\). Pole podstawy będzie więc równe:
$$P_{p}=\frac{1}{2}\cdot12\cdot5 \\
P_{p}=6\cdot5 \\
P_{p}=30[cm^2]$$
Krok 5. Obliczenie objętości graniastosłupa.
Znamy już wszystkie dane. Pole podstawy jest równe \(30cm^2\), wysokość bryły wynosi \(9cm\), zatem objętość wynosi:
$$V=P_{p}\cdot H \\
V=30cm^2\cdot9cm \\
V=270cm^3$$
To jest napweno dobrze ?
Na pewno :)