Rozwiązanie
Krok 1. Rozwiązanie pierwszej części zadania.
W tym zadaniu musimy poprawnie wyłączyć czynniki przed znak pierwiastka, tak aby pod pierwiastkami jednej i drugiej liczby znalazła się ta sama wartość - dopiero wtedy będziemy w stanie powiedzieć ile razy jedna liczba jest większa od drugiej.
Zacznijmy od pierwszej liczby. Rozbijając \(32\) na iloczyn \(16\cdot2\) otrzymamy:
$$3\sqrt{32}=3\cdot\sqrt{16\cdot2}=3\cdot4\sqrt{2}=12\sqrt{2}$$
Teraz czas na drugą liczbę. Rozbijając \(18\) na iloczyn \(9\cdot2\) otrzymamy:
$$2\sqrt{18}=2\sqrt{9\cdot2}=2\cdot3\cdot\sqrt{2}=6\sqrt{2}$$
To oznacza, że pierwsza liczba jest dwa razy większa od drugiej, bowiem \(12\sqrt{2}:6\sqrt{2}=2\).
Krok 2. Rozwiązanie drugiej części zadania.
Wiedząc, że \(\sqrt{16}=4\) oraz że \(\sqrt{81}=9\) otrzymamy:
$$\sqrt{\sqrt{16}+\sqrt{81}}=\sqrt{4+9}=\sqrt{13}$$
Liczba wymierna to taka, którą da się zapisać w postaci ułamka zwykłego, którego licznik jest liczbą całkowitą, a mianownik jest różny od zera. Liczby \(\sqrt{13}\) nie uda się zapisać w ten sposób i jest to klasyczny przykład liczby niewymiernej.
dziekuje :D
Dziękuję za pomoc, super wytłumaczone ♥