Rozwiązanie
Krok 1. Obliczenie liczby wszystkich zdarzeń elementarnych.
Skoro rzucamy trzykrotnie standardową kostką sześcienną to zgodnie z regułą mnożenia wszystkich zdarzeń elementarnych będziemy mieć: \(|Ω|=6\cdot6\cdot6=216\).
Krok 2. Obliczenie liczby zdarzeń sprzyjających.
Zdarzeniami sprzyjającymi są takie rzuty, których suma daje wynik równy \(16\). Wbrew pozorom nie jest dużo takich możliwości, bo maksymalnie z trzech rzutów możemy mieć \(18\) oczek. To oznacza, że aby wypadła suma równa \(16\), to albo na jednej kostce musi wypaść \(4\), a na reszcie \(6\), albo muszą wypaść dwie \(5\) oraz \(6\). Sprzyjającymi zdarzeniami będą więc:
$$(4,6,6); (6,4,6); (6,6,4); \\
(6,5,5); (5,6,5); (5,5,6). $$
Mamy więc sześć takich zdarzeń, zatem możemy zapisać, że \(|A|=6\).
Krok 3. Obliczenie prawdopodobieństwa.
$$P(A)=\frac{|A|}{|Ω|}=\frac{6}{216}=\frac{1}{36}$$