Dany jest romb o boku długości 4 i kącie rozwartym 150°. Pole tego rombu jest równe

Dany jest romb o boku długości \(4\) i kącie rozwartym \(150°\). Pole tego rombu jest równe:

Rozwiązanie

To zadanie jest bardzo proste do policzenia, o ile pamiętamy że w tablicach matematycznych znajduje się następujący wzór:
$$P=a^2\cdot sinα$$

Zanim jednak skorzystamy z tego wzoru to musimy jeszcze wyznaczyć wartość sinusa \(150°\).

Krok 1. Obliczenie wartości \(sin150°\).
W tablicach trygonometrycznych nie znajdziemy wartości sinusa dla kątów rozwartych. Musimy więc skorzystać z tzw. wzorów redukcyjnych:
$$sin(180-α)=sinα \\
sin(180°-30°)=sin30° \\
sin150°=sin30°$$

To oznacza, że \(sin150°\) będzie równy \(sin30°\), czyli \(\frac{1}{2}\).

Krok 2. Obliczenie pola powierzchni rombu.
$$P=a^2\cdot sinα \\
P=4^2\cdot sin150° \\
P=16\cdot\frac{1}{2} \\
P=8$$

Odpowiedź

A

0 komentarzy
Inline Feedbacks
View all comments