Ciąg geometryczny – zadania maturalne

Ciąg geometryczny - zadania

Zadanie 1. (1pkt) W ciągu geometrycznym \((a_{n})\) dane są: \(a_{1}=32\) i \(a_{4}=-4\). Iloraz tego ciągu jest równy:

Zadanie 2. (1pkt) W ciągu geometrycznym \((a_{n})\) dane są \(a_{1}=3\) i \(a_{4}=24\). Iloraz tego ciągu jest równy:

Zadanie 3. (1pkt) W malejącym ciągu geometrycznym \((a_{n})\) mamy: \(a_{1}=-2\) i \(a_{3}=-4\). Iloraz tego ciągu jest równy:

Zadanie 4. (1pkt) W ciągu geometrycznym \((a_{n})\) dane są: \(a_{1}=2\) i \(a_{2}=12\). Wtedy:

Zadanie 5. (1pkt) Dany jest nieskończony ciąg geometryczny \((a_{n})\), w którym \(a_{3}=1\) i \(a_{4}=\frac{2}{3}\). Wtedy:

Zadanie 6. (1pkt) W ciągu geometrycznym \((a_{n})\) mamy \(a_{3}=5\) i \(a_{4}=15\). Wtedy wyraz \(a_{5}\) jest równy:

Zadanie 7. (1pkt) W ciągu geometrycznym \((a_{n})\) dane są \(a_{2}=\frac{\sqrt{3}}{2}\) i \(a_{3}=-\frac{3}{2}\). Wtedy wyraz \(a_{1}\) jest równy:

Zadanie 8. (1pkt) Ciąg \((2\sqrt{2},\;4,\;a)\) jest geometryczny. Wówczas:

Zadanie 9. (1pkt) W ciągu geometrycznym \((a_{n})\) dane są: \(a_{1}=36\), \(a_{2}=18\). Wtedy:

Zadanie 10. (1pkt) Ciąg \((27,\;18,\;x+5)\) jest geometryczny. Wtedy:

Zadanie 11. (1pkt) W ciągu geometrycznym \((a_{n})\) pierwszy wyraz jest równy \(\frac{9}{8}\), a czwarty wyraz jest równy \(\frac{1}{3}\). Wówczas iloraz \(q\) tego ciągu jest równy:

Zadanie 12. (1pkt) Liczby: \(x-2,\;6,\;12\), w podanej kolejności, są trzema kolejnymi wyrazami ciągu geometrycznego. Liczba \(x\) jest równa:

Zadanie 13. (1pkt) W ciągu geometrycznym \((a_{n})\), określonym dla \(n\ge1\), wyraz \(a_{1}=5\), natomiast iloraz \(q=-2\). Suma dziesięciu początkowych wyrazów tego ciągu jest równa:

Zadanie 14. (1pkt) Ciąg geometryczny \((a_{n})\) określony jest wzorem \(a_{n}=-\frac{3^n}{4}\) dla \(n\ge1\). Iloraz tego ciągu jest równy:

Zadanie 15. (1pkt) Dany jest ciąg geometryczny \((a_{n})\), w którym \(a_{1}=-\sqrt{2}\), \(a_{2}=2\), \(a_{3}=-2\sqrt{2}\). Dziesiąty wyraz tego ciągu, czyli \(a_{10}\), jest równy:

Zadanie 16. (1pkt) W rosnącym ciągu geometrycznym \((a_{n})\), określonym dla \(n\ge1\), spełniony jest warunek \(a_{4}=3a_{1}\). Iloraz \(q\) tego ciągu jest równy:

Zadanie 17. (1pkt) Ciąg geometryczny \((a_{n})\) jest określony wzorem \(a_{n}=2^n\) dla \(n\ge1\). Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Zadanie 18. (1pkt) Ciąg \((x,\;2x+3,\;4x+3)\) jest geometryczny. Pierwszy wyraz tego ciągu jest równy:

Zadanie 19. (1pkt) Dany jest ciąg geometryczny \((a_{n})\), w którym \(a_{1}=72\) i \(a_{4}=9\). Iloraz \(q\) tego ciągu jest równy:

Zadanie 20. (1pkt) Pierwszy wyraz ciągu geometrycznego jest równy \(8\), a czwarty wyraz tego ciągu jest równy \(-216\). Iloraz tego ciągu jest równy:

Zadanie 21. (1pkt) Dany jest trójwyrazowy ciąg geometryczny \((24,\;6,\;a-1)\). Stąd wynika, że:

Zadanie 22. (1pkt) W dziewięciowyrazowym ciągu geometrycznym o wyrazach dodatnich pierwszy wyraz jest równy \(3\), a ostatni wyraz jest równy \(12\). Piąty wyraz tego ciągu jest równy:

Zadanie 23. (4pkt) Ciąg \((1,\;x,\;y-1)\) jest arytmetyczny, natomiast ciąg \((x,\;y,\;12)\) jest geometryczny. Oblicz \(x\) oraz \(y\) i podaj ten ciąg geometryczny.

Zadanie 24. (2pkt) Liczby \(64,\;x,\;4\) są odpowiednio pierwszym, drugim i trzecim wyrazem malejącego ciągu geometrycznego. Oblicz piąty wyraz tego ciągu.

Zadanie 25. (4pkt) Ciąg \((9,x,19)\) jest arytmetyczny, a ciąg \((x,42,y,z)\) jest geometryczny. Oblicz \(x\), \(y\) oraz \(z\).

Zadanie 26. (2pkt) Nieskończony ciąg geometryczny \((a_{n})\) jest określony wzorem \(a_{n}=7\cdot3^{n+1}\), dla \(n\ge1\). Oblicz iloraz \(q\) tego ciągu.

Zadanie 27. (5pkt) W nieskończonym ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), suma jedenastu początkowych wyrazów tego ciągu jest równa \(187\). Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa \(12\). Wyrazy \(a_{1}, a_{3}, a_{k}\) ciągu \((a_{n})\), w podanej kolejności, tworzą nowy ciąg - trzywyrazowy ciąg geometryczny \((b_{n})\). Oblicz \(k\).

Zadanie 28. (4pkt) Dany jest nieskończony rosnący ciąg arytmetyczny \((a_{n})\), dla \(n\ge1\) taki, że \(a_{5}=18\). Wyrazy \(a_{1}\), \(a_{3}\) oraz \(a_{13}\) tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem pewnego ciągu geometrycznego. Wyznacz wzór na \(n\)-ty wyraz ciągu \((a_{n})\).

Dodaj komentarz

Bądź pierwszy!