Ciąg geometryczny an jest określony wzorem an=2^n dla n≥1. Suma dziesięciu początkowych

Ciąg geometryczny \((a_{n})\) jest określony wzorem \(a_{n}=2^n\) dla \(n\ge1\). Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

\(2(1-2^{10})\)
\(-2(1-2^{10})\)
\(2(1+2^{10})\)
\(-2(1+2^{10})\)
Rozwiązanie:
Krok 1. Obliczenie wartości ilorazu \(q\).

Aby wyznaczyć wartość ilorazu \(q\) obliczmy sobie najpierw wartość pierwszego i drugiego wyrazu tego ciągu:
$$a_{n}=2n \\
a_{1}=2^1=2 \\
a_{2}=2^2=4$$

$$q=\frac{a_{2}}{a_{1}}=\frac{4}{2}=2$$

Krok 2. Obliczenie sumy dziesięciu pierwszy wyrazów.

Znając wartość ilorazu \(q\) oraz wartość pierwszego wyrazu, możemy skorzystać z następującego wzoru:
$$S_{n}=a_{1}\cdot\frac{1-q^n}{1-q} \\
S_{10}=2\cdot\frac{1-2^{10}}{1-2} \\
S_{10}=2\cdot\frac{1-2^{10}}{-1} \\
S_{10}=-2\cdot(1-2^{10})$$

Odpowiedź:

B. \(-2(1-2^{10})\)

Dodaj komentarz

Twój adres email nie zostanie opublikowany.