Ciąg arytmetyczny – zadania maturalne

Ciąg arytmetyczny - zadania

Zadanie 1. (1pkt) W ciągu arytmetycznym trzeci wyraz jest równy \(14\), a jedenasty jest równy \(34\). Różnica tego ciągu jest równa:

Zadanie 2. (1pkt) W ciągu arytmetycznym \((a_{n})\) dane są: \(a_{3}=13\) i \(a_{5}=39\). Wtedy wyraz \(a_{1}\) jest równy:

Zadanie 3. (1pkt) W ciągu arytmetycznym \((a_{n})\) mamy: \(a_{2}=5\) i \(a_{4}=11\). Oblicz \(a_{5}\).

Zadanie 4. (1pkt) W ciągu arytmetycznym \(a_{1}=3\) oraz \(a_{20}=7\). Wtedy suma \(S_{20}=a_{1}+a_{2}+...a_{19}+a_{20}\) jest równa:

Zadanie 5. (1pkt) Dany jest nieskończony rosnący ciąg arytmetyczny \((a_{n})\) o wyrazach dodatnich. Wtedy:

Zadanie 6. (1pkt) Ciąg arytmetyczny \((a_{n})\) jest określony wzorem \(a_{n}=-2n+1\) dla \(n\ge1\). Różnica tego ciągu jest równa:

Zadanie 7. (1pkt) Ciąg \((a_{n})\) określony dla \(n\ge1\) jest arytmetyczny oraz \(a_{3}=10\) i \(a_{4}=14\). Pierwszy wyraz tego ciągu jest równy:

Zadanie 8. (1pkt) Dany jest ciąg arytmetyczny \((a_{n})\) w którym różnica \(r=-2\) oraz \(a_{20}=17\). Wówczas pierwszy wyraz tego ciągu jest równy:

Zadanie 9. (1pkt) Liczby \(7,\;a,\;49\) w podanej kolejności tworzą ciąg arytmetyczny. Wtedy \(a\) jest równe:

Zadanie 10. (1pkt) Liczby \(2, -1, -4\) są trzema początkowymi wyrazami ciągu arytmetycznego \((a_{n})\), określonego dla liczb naturalnych \(n\ge1\). Wzór ogólny tego ciągu ma postać:

Zadanie 11. (1pkt) W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_{2}=11\) i \(a_{4}=7\). Suma czterech początkowych wyrazów tego ciągu jest równa:

Zadanie 12. (1pkt) Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa \(13\). Wynika stąd, że suma trzeciego i czwartego wyrazu tego ciągu jest równa:

Zadanie 13. (1pkt) W ciągu arytmetycznym \((a_{n})\) określonym dla \(n\ge1\) dane są \(a_{1}=-4\) i \(r=2\). Którym wyrazem tego ciągu jest liczba \(156\)?

Zadanie 14. (1pkt) W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są: \(a_{1}=5\), \(a_{2}=11\). Wtedy:

Zadanie 15. (2pkt) Piąty wyraz ciągu arytmetycznego jest równy \(26\), a suma pięciu początkowych wyrazów tego ciągu jest równa \(70\). Oblicz pierwszy wyraz tego ciągu.

Zadanie 16. (2pkt) Liczby \(x\), \(y\), \(19\) tworzą w podanej kolejności ciąg arytmetyczny, przy czym \(x+y=8\). Oblicz \(x\) i \(y\).

Zadanie 17. (2pkt) Liczby \(2x+1\), \(6\), \(16x+2\) są w podanej kolejności pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Oblicz \(x\).

Zadanie 18. (2pkt) Suma \(S_{n}=a_{1}+a_{2}+...+a_{n}\) początkowych \(n\) wyrazów pewnego ciągu arytmetycznego \((a_{n})\) jest określona wzorem \(S_{n}=n^2-2n\). Wyznacz wzór na \(n\)-ty wyraz tego ciągu.

Zadanie 19. (2pkt) Pierwszy wyraz ciągu arytmetycznego jest równy \(3\), czwarty wyraz tego ciągu jest równy \(15\). Oblicz sumę sześciu początkowych wyrazów tego ciągu.

Zadanie 20. (2pkt) Dany jest ciąg arytmetyczny \((a_{n})\) określony dla \(n\ge1\), w którym \(a_{5}=22\) oraz \(a_{10}=47\). Oblicz pierwszy wyraz \(a_{1}\) i różnicę \(r\) tego ciągu.

Zadanie 21. (5pkt) Dany jest ciąg arytmetyczny \((a_{n})\) określony dla każdej liczby naturalnej \(n\ge1\), w którym \(a_{1}+a_{2}+a_{3}+a_{4}=2016\) oraz \(a_{5}+a_{6}+a_{7}+...+a_{12}=2016\). Oblicz pierwszy wyraz, różnicę oraz najmniejszy dodatni wyraz ciągu \((a_{n})\).

Zadanie 22. (4pkt) Ciąg arytmetyczny \((a_{n})\) określony jest wzorem \(a_{n}=2016-3n\), dla \(n\ge1\). Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.

Zadanie 23. (2pkt) W skończonym ciągu arytmetycznym \((a_{n})\) pierwszy wyraz \(a_{1}\) jest równy \(7\) oraz ostatni wyraz \(a_{n}\) jest równy \(89\). Suma wszystkich wyrazów tego ciągu jest równa \(2016\). Oblicz, ile wyrazów ma ten ciąg.

Zadanie 24. (2pkt) W ciągu arytmetycznym \((a_{n})\), określonym dla \(n\ge1\), dane są: wyraz \(a_{1}=8\) i suma trzech początkowych wyrazów tego ciągu \(S_{3}=33\). Oblicz różnicę: \(a_{16}-a_{13}\).

Zadanie 25. (1pkt) Dla każdej liczby całkowitej dodatniej \(n\) suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_{n})\) jest określona wzorem \(S_{n}=2n^2+n\). Wtedy wyraz \(a_{2}\) jest równy:

Dodaj komentarz

Bądź pierwszy!