Cenę laptopa obniżono najpierw o 15%, a później o 150zł

Cenę laptopa obniżono najpierw o \(15\%\), a później o \(150zł\). Po obu obniżkach laptop kosztuje \(2400zł\).



Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F - jeśli jest fałszywe.

Przed tymi dwoma obniżkami laptop kosztował \(3000zł\).
Po obu obniżkach cena laptopa stanowi \(85\%\) ceny początkowej.
Rozwiązanie

Krok 1. Ocena prawdziwości pierwszego zdania.
Rozpiszmy sobie jak zmieniała się cena laptopa:
\(x\) - początkowa cena laptopa
\(0,85x\) - cena laptopa po pierwszej obniżce
\(0,85x-150\) - cena laptopa po drugiej obniżce

Z treści zadania wiemy, że po obu obniżkach laptop kosztuje \(2400zł\), więc możemy zapisać, że:
$$0,85x-150=2400 \\
0,85x=2550 \\
x=3000$$

To oznacza, że początkowa cena laptopa wynosiła \(3000zł\). Pierwsze zdanie jest więc prawdą.

Krok 2. Ocena prawdziwości drugiego zdania.
Tu już bez obliczeń powinniśmy dostrzec, że to zdanie jest fałszem, ponieważ już po pierwszej obniżce o \(15\%\) cena laptopa stanowiła \(85\%\) ceny początkowej, a po niej nastąpiła jeszcze kolejna obniżka.

Możemy jednak samodzielnie obliczyć jakim procentem ceny początkowej jest cena po obu obniżkach. Skoro cena końcowa jest równa \(2400zł\), a cena początkowa wynosiła \(3000zł\), to otrzymamy:
$$\frac{2400}{3000}\cdot100\%=0,8\cdot100\%=80\%$$

Zdanie jest więc fałszem.

Odpowiedź

1) PRAWDA

2) FAŁSZ

0 komentarzy
Inline Feedbacks
View all comments