Rozwiązanie
Krok 1. Sporządzenie rysunku pomocniczego.
Sytuacja z treści zadania wyglądać będzie następująco:

Krok 2. Obliczenie długości odcinka \(AS\).
Wiemy, że bok kwadratu ma długość \(12\), więc \(|AB|=12\), natomiast odcinek \(BS\) ma połowę tej długości, czyli \(|BS|=6\). Możemy więc skorzystać teraz z twierdzenia Pitagorasa i obliczyć długość odcinka \(AS\):
$$12^2+6^2=|AS|^2 \\
144+36=|AS|^2 \\
|AS|^2=180 \\
|AS|=\sqrt{180} \quad\lor\quad |AS|=-\sqrt{180}$$
Ujemny wynik oczywiście odrzucamy, bo długość boku musi być dodatnia. Zostaje nam zatem \(|AS|=\sqrt{180}\), co moglibyśmy jeszcze rozpisać jako \(\sqrt{36\cdot5}=6\sqrt{5}\).
Krok 3. Dostrzeżenie podobieństwa trójkątów i ustalenie skali podobieństwa.
Spójrzmy na trójkąty \(ABS\) oraz \(BPS\). Są to trójkąty podobne, co możemy stwierdzić na podstawie cechy kąt-kąt-kąt (wystarczy zauważyć, że oba trójkąty są prostokątne, a dodatkowo mają jeden kąt wspólny przy wierzchołku \(S\), co oznacza, że wszystkie kąty w tych dwóch trójkątach mają jednakowe miary). Dla lepszego zobrazowania, możemy sobie narysować te dwa trójkąty osobno (uwaga na oznaczenia wierzchołków!):

W jednym i drugim trójkącie znamy długości przeciwprostokątnych: \(6\) oraz \(6\sqrt{5}\), no i widzimy wyraźnie, że duży trójkąt ma w takim razie boki \(\sqrt{5}\) razy większe od małego trójkąta. Moglibyśmy więc zapisać, że \(k=\sqrt{5}\).
Krok 4. Obliczenie długości boku \(BP\).
Korzystając ze skali podobieństwa moglibyśmy zapisać, że:
$$|BP|\cdot k=|BA| \\
|BP|\cdot\sqrt{5}=12 \\
|BP|=\frac{12}{\sqrt{5}}$$
Otrzymany wynik jest jak najbardziej poprawny, ale dobrze byłoby jeszcze usunąć niewymierność z mianownika, zatem:
$$|BP|=\frac{12\cdot\sqrt{5}}{\sqrt{5}\cdot\sqrt{5}}=\frac{12\sqrt{5}}{5}$$